

Biogas process monitoring – techniques and recommendations

Bernhard Drosg

University of Natural Resources and Life Sciences, Vienna Dept. for Agrobiotechnology (IFA Tulln) Institute for Environmental Biotechnology

Overview

- Brochure of IEA Bioenergy Task 37 currently in progress
- Why is process monitoring so important?
- Process monitoring parameters
 - Parameters characterising the process
 - Early indicators of process imbalance
 - Variable process parameters
- Monitoring schemes
- Interpretation of process monitoring data
- Conclusions

Establishment of a detailed brochure on "biogas process monitoring" is in progress

The focus of process monitoring lies on the biological degradation process (<u>not included are:</u> monitoring of technical devices, security measures, process optimisation, ...)

Why is process monitoring so important in anaerobic digestion?

It's even worse ...

Process monitoring can help to ...

- Identify instabilities in anaerobic fermenters over time
- React on time before a severe crash happens
- Re-stabilise crashed plants
- Accompany a successful start-up of a plant
- Give an overall picture of the biogas process

Monitoring parameters can be divided into

- Parameters characterising the process
- Early indicators of process imbalance
- Variable process parameters

Source: (Weiland, 2008)

Parameters characterising the process

- Quantity and composition of feedstock
- Biogas production and composition
- Fermentation temperature
- TS (total solids) / DM (dry matter)
- pH value
- Ammonium nitrogen (NH4-N)

→ These parameters are necessary for finding reasons of a process imbalance

Early indicators of process imbalance

- Ripley ratio (German: FOS / TAC) titration
- Volatile fatty acids (VFA)
- Biogas production and composition
- Hydrogen
- Unspecific parameters
 - Redox
 - NIRS (Near Infrared Spectrometry)

\rightarrow These parameters give information on current process stability, but often not the reason why!

Ripley factor (FOS/TAC) I

... is a titration measurement with sulphuric acid and determines the ratio of the intermediate alkalinity (IA) caused by organic acids over the partial alkalinity (PA) caused by the bicarbonates (also called IA / PA ratio)

Bernhard Drosg I University of Natural Resources and Life Sciences, Vienna I IFA Tulln – Institute for Environmental Biotechnology

FA

Ripley factor (FOS/TAC) II

	Titration end points						
Authors	Year	pH₁	pH₂	pH₃	pH₄	Pre-Tr.	Medium
DiLallo/Albertson	1961	3.30	heating	4.00	7.00	centr.	ferm. water
McGhee	1968	5.00	4.40			FF	ferm. water
Nordmann	1977	5.00	4.40			FF	ferm. water
Jenkins	1983	5.75	4.30			n.a.	ferm. water
Kapp	1984	5.00	4.30	4.00		0.45µm	ferm. water
Anderson/Yang	1992	5.10	3.50			n.a.	ferm. water
Moosbrugger	1993	6.70	5.90	5.20	4.30	FF	ferm. water

Source: (Weichgrebe , 2007)

Germany (according to McGhee / Nordmann)

<u>UK</u> (according to Jenkins – also Ripley et al., 1986)

Hardly comparable between plants:

 \rightarrow Different methods, different substrates, different laboratory staff

Volatile Fatty acids (VFA)

\rightarrow Determination by HPLC or GC

Bernhard Drosg I University of Natural Resources and Life Sciences, Vienna I IFA Tulln – Institute for Environmental Biotechnology

TULLN

Overview of indicators of process imbalance

Ripley factor	 good and fast information on process stability simple and cheap to carry out cannot be compared between biogas plants
VFA	 very good and detailed information relation of acetic to propionic acid
Biogas production	 vague indicator on process imbalance other reasons possible (change in substrate,)
Biogas composition	 change in methane content → moderate indicator H₂S concentration → can have influence!
H ₂	 increases in hydrogen concentration \rightarrow very early indicator
Redox	 early indicator → However, the redox potential is also influenced by other factors (e.g. a change in pH).
NIRS	 fast (online) information High investment costs, calibration efforts

Bernhard Drosg I University of Natural Resources and Life Sciences, Vienna I IFA Tulln – Institute for Environmental Biotechnology 13

Variable process parameters

Organic loading rate (OLR)

 \rightarrow If too high, acidification can occur

- Retention time (RT)
 - \rightarrow If too low, washing out of microorganisms can occur

\rightarrow These parameters may be variated by the operator (to some extent)

Possible reasons for process instabilities

- Feeding problems
- Temperature changes
- Utilisation of high nitrogen feedstocks
- Utilisation of high sulphur feedstocks
- Trace element limitation
- Further inhibitory substances in feedstocks
 - Heavy metal ions
 - Light metal ions
 - Antibiotics and disinfectants

General recommendations for avoiding process imbalances

- Continuous feeding
- Continuous feedstock mix (e.g. manure and biowaste)
- Careful change of feedstock mixes
- Avoid temperature changes
- Constant intervals and intensity of agitating
- Continuous process control

Source: (Clemens, 2012)

Possible monitoring schemes

- Minimum monitoring
- Standard monitoring
- Advanced Monitoring

Minimum Monitoring

Parameter	Frequency		
INPUT			
Mass of feedstock input	daily		
(liquid, solid)			
PROCESS PARAMETERS			
Gas production	daily		
Temperature in the reactor	daily		
рН	twice a week		

Standard Monitoring

Parameter	Frequency			
INPUT				
Mass of feedstock input (liquid, solid)	daily			
PROCESS PARAMETERS				
Gas production	daily			
Temperature in the reactor	daily			
Biogas quality (CH ₄ , CO ₂ , H ₂ S)	daily (to twice a week)			
рН	daily (to twice a week)			
INDICATORS OF PROCESS IMBALANCE (Only one necessary)				
Ripley factor (FOS/TAC)	2 per month			
VFA	1-2 per month			

Advanced Monitoring

Frequency				
daily				
Depending on occurrence				
Depending on importance				
daily				
daily				
daily				
1-2 times per month				
daily (to twice a week)				
INDICATORS OF PROCESS IMBALANCE (Only one necessary)				
2 - 4 per week				
2 - 4 per month				
daily				

Deminaru Drosu urces and Life Sciences, vienna i i IFA Tuint – institute for Environmental Diolectinology

Why process monitoring during start-up?

Possible loss of income (including subsidies) in an Austrian

500 kW_{el} biogas plant depending on different start-up times (Resch et al., 2006)

Interpretation of monitoring data II

		GREEN	YELLOW	RED
рН	[-]	7.5 – 8.2	7.2-7.5	< 7.2; > 8.2
Total VFA	[mg/L]	< 1,300	1,300 – 4,500	> 4,500
Acetic acid	[mg/L]	< 1,000	1,000 – 2,000	> 2,000
Propionic acid	[mg/L]	< 250	250 – 1,000	> 1,000
Iso-butyric acid	[mg/L]	< 60	60 – 200	> 200
Butyric acid	[mg/L]	< 50	50 – 100	> 100
Iso-valerianic acid	[mg/L]	< 50	50 – 100	> 100
Valerianic acid	[mg/L]	< 50	50 - 100	> 100
NH4-N	[mg/L]	< 5,000	> 5,000	-
TS / DM	[%]	4 - 8	< 4; 8 – 10.5	> 10.5
VS / oDM	[%]	≤ 6	6 - 8.3	> 8.3

Source: (Laaber, 2011)

Bernhard Drosg I University of Natural Resources and Life Sciences, Vienna I IFA Tulln – Institute for Environmental Biotechnology 23

Conclusions

- The anaerobic process is a complex chain of subsequent and interacting degredation steps
 - \rightarrow biological monitoring of a biogas plant is highly important
- Some monitoring parameters are essential for indicating an upcoming process imbalance, whereas others help to find the reason for it
- The intensity of the corresponding monitoring scheme has to be adapted to the needs and financial risks of a biogas plant
- The interpretation of monitoring data has to be carried out by qualified personnel
 - \rightarrow adequate training of biogas plant operators is necessary

References

- Clemens J (2012) How to Optimize the Biogas Process according to Process Control Monitoring Data in Biogas Plants. <URL: http://www.biogaschina.org/index.php?id=41&cid=38&fid=23&task=download&option=com_flexicontent&Itemid=19&I ang=en, accessed on April 13, 2012>
- Laaber, M. (2011) Gütesiegel Biogas Evaluierung der technischen, ökologischen und sozioökonomischen Rahmenbedingungen für eine Ökostromproduktion aus Biogas. PhD thesis at the University of Natural Resources and Life Sciences, Vienna
- Resch C, Kirchmayr R, Braun R (2006) Start- Up und Prozesskontrolle. Unterlagen zum Anlagenbetreiberkurs.
- Ripley LE; Boyle JC and Converse JC (1986) Improved alkalimetric monotoring for anaerobic digestion of high strength wastes. Journal of the Water Pollution Control Federation, 1986, vol. 58, no. 5, p. 406-411.
- Weichgrebe, D (2007) FOS/TAC, Herkunft, Methode und Anwendbarkeit, Vortrag: Wasserwirtschaftliches Kolloquium Leibniz Universität Hannover
- Weiland P (2008) Wichtige Messdaten f
 ür den Prozessablauf und Stand der Technik in der Praxis. In: Fachagentur Nachwachsende Rohstoffe e.V. – FNR (eds.), G
 ülzower Fachgespr
 äche, Band 27, Messen, Steuern, Regeln bei der Biogaserzeugung, 17-31.

Input to Session III: Digestate management

The Austrian participation in the IEA Bioenergy Task 37 is supported by the Austrian Federal Ministry for Transport, Innovation and Technology

IEA Bioenergy

BOKU – Universität für Bodenkultur, Wien University of Natural Resources and Applied Life Sciences, Vienna Department for Agrobiotechnology, IFA-Tulln, Institute for Environmental Biotechnology

DI Dr Bernhard Drosg Konrad Lorenz Straße 20, A-3430 Tulln Tel.: +43 2272 66280-537, Fax: +43 1 2272 66280-503 bernhard.drosg@boku.ac.at, www.boku.ac.at, www.ifa-tulln.ac.at